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Precision medicine, the concept that specific treatments can be targeted to groups of individuals with specific genetic, cellular, or
molecular features, is a key aspect of modern healthcare, and its use is rapidly expanding. In diabetes, the application of
precision medicine has been demonstrated in monogenic disease, where sulphonylureas are used to treat patients with neonatal
diabetes due to mutations in ATP-dependent potassium (K,.p) channel genes. However, diabetes is highly heterogeneous, both
between and within polygenic and monogenic subtypes. Making the correct diagnosis and using the correct treatment from
diagnosis can be challenging for clinicians, but it is crucial to prevent long-term morbidity and mortality. To facilitate precision
medicine in diabetes, research is needed to develop a better understanding of disease heterogeneity and its impact on potential
treatments for specific subtypes. Animal models have been used in diabetes research, but they are not translatable to humans in
the majority of cases. Advances in molecular genetics and functional laboratory techniques and availability and sharing of large
population data provide exciting opportunities for human studies. This review will map the key elements of future diabetes
research in humans and its potential for clinical translation to promote precision medicine in all diabetes subtypes.

1. Introduction

Diabetes is a heterogeneous group of metabolic disorders that
represents an enormous health burden globally. In 2014, an
estimated 422 million adults had diabetes, and the prevalence
continues to rise [1, 2]. Complications related to diabetes
cause significant morbidity and mortality [1]. At a time when
healthcare resources to support an ageing population are lim-
ited, it is crucial to develop more effective treatments and
make sure that patients receive the treatment appropriate to
their condition.

Diabetes is multifactorial and caused by both genetic and
environmental factors. Monogenic forms of diabetes (caused
by mutations in single genes), including maturity-onset dia-
betes of the young (MODY) and neonatal diabetes (diag-
nosed before 6 months of age), are rare, representing
~3.6% of all cases diagnosed under 30 years [3]. Indeed,
for most types of diabetes, multiple genes are involved. Type
1 diabetes (T1D) is characterised by insulin deficiency most
often resulting from immune-mediated destruction of

pancreatic beta (f) cells, whilst type 2 diabetes (T2D)
results from insulin resistance and f3 cell failure [4]. Also,
it is becoming clear that specific subtypes within T1D and
T2D have different aetiologies. Correct diagnosis is crucial
to allow selection of appropriate therapy, but this can be a
challenge for clinicians; even the UK prime minister was
misdiagnosed as having T2D and started on the wrong
treatment before it became apparent that she had T1D
requiring insulin therapy [5]. Indeed, up to 15% of
patients with diabetes are misclassified in primary care in
England [6]. A recent cross-sectional study showed rates
of misclassification are particularly high in those patients
with T2D (defined by the presence of significant endoge-
nous insulin secretion more than three years after diagno-
sis) who are older (>34 years) at diagnosis and who start
insulin immediately; they are misclassified as T1D in
around half of cases [7]. This experience is not unique
to the UK; an 11-year follow-up of an American paediatric
diabetes cohort revealed initial misclassification of diabetes
in over 20% of individuals [8]. Add to this the
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heterogeneity within T1D and T2D, and diagnostics and
treatment become a major challenge even for the most
experienced clinicians.

Precision medicine is the tailoring of treatment to specific
molecular or cellular characteristics of groups of patients; this
can also be influenced by environmental and lifestyle factors.
Precision medicine is rapidly becoming a key concept in
many areas of modern clinical practice [9]. Perhaps its most
widely recognised application is in oncology, where the
specific genetic profile of the tumour can determine the
targeted treatment [10, 11]. However, the precision approach
has also been applied to other areas of medicine [9], and the
field is rapidly developing, largely due to ongoing advances in
molecular genetic techniques such as next-generation
sequencing (NGS) [12].

There is increasing interest in applying precision
medicine to diabetes. In fact, it has already been done in
rare monogenic subtypes of the disease, but there are
challenges when it comes to applying precision medicine
to T1D and T2D [13-15]. One aspect that makes transla-
tional research for new targeted treatments particularly
challenging in common polygenic subtypes of diabetes is
the heterogeneity within these broad disease categories as
described above. The first step will be developing an
understanding of the often subtle differences in pathophys-
iology and factors influencing treatment response between
individuals with the same “type” of diabetes. This has not
been possible using artificial animal models of diabetes. Even
though the recent advances in human research methods are
more promising than using animals, still some difficulties
exist as the lessons learned from monogenic disease are not
readily translatable to polygenic diabetes [13].

To facilitate application of a precision medicine approach
in diabetes, a comprehensive map of the pathophysiology
and treatment targets for each known diabetes subtype is
needed, in keeping with the “adverse outcome pathway”-
based approach applied to human drug discovery [16]. In this
review, we will outline why applying precision medicine to
diabetes is unachievable using research findings from tradi-
tional animal models and discuss the challenges faced in
future translational research in the field.

2. Animal Models of Diabetes Are Not Reliably
Translatable to Humans

Animals have been used in diabetes research for over a
century in an attempt to create models that are relevant
to humans [17, 18]. To date, there is no single animal
model that accurately represents all aspects of human
T1D or T2D. Rodent models have provided some insights
into isolated pathways and mechanisms relevant to poly-
genic diabetes without the time and expense associated
with clinical trials and long-term follow-up studies in
humans [19]. However, results from these experiments
must be interpreted with caution. Most animal models
have little relevance to human diabetes; this is exemplified
by the problems encountered when attempting to translate
animal models of T1D and T2D to humans.
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2.1. Animal Models in TID. Early spontaneous rodent
models of T1D include the nonobese diabetic (NOD) mouse
[20] and the biobreeding (BB) rat [21-23]. In the NOD
mouse, insulitis occurs at 3—-4 weeks of age and is accompa-
nied by infiltration of islets by CD4 and CD8 lymphocytes,
resulting in cytotoxicity and f3 cell destruction with the onset
of overt diabetes at around 18 weeks. However, the patterns
of insulitis seen in NOD mice are different from those
observed in human T1D [24]. In addition, there are signifi-
cant gender differences in the prevalence of diabetes in
NOD mice [25], with females showing the earlier onset and
more aggressive disease, likely due to modification of cyto-
kine production and STAT4 gene expression by sex hor-
mones [25]. The gender difference noted in the mice is not
apparent in human T1D; this is one of the few circumstances
where an autoimmune disease does not occur more fre-
quently in females [26]. BB rats develop diabetes at 8-16
weeks of age and have severe insulin deficiency, but despite
not showing the gender differences seen in NOD mice, the
rats are lymphopenic [27], which is not a characteristic of
T1D in humans. Importantly, in both NOD mice and BB
rats, therapeutic interventions for diabetes that have shown
promise, e.g., oral insulin and nicotinamide, have not been
successful when tried in humans [28, 29]. More recently,
the Akita mouse, which has a mutation in the insulin 2 gene,
has been used as a genetically induced model of T1D [30].
These mice show severe insulin deficiency and have a short
lifespan; however, caution should be used in extrapolating
findings from a monogenic model in a rodent to a more com-
plex polygenic disease in humans, as the pathophysiologies
are likely to be different. The lymphocytic choriomeningitis
virus (LCMV) rat is a virus-induced model of T1D [31].
LCMV is a rodent-borne virus, but if human infection
occurs, there can be neurological sequelae, particularly in
the context of congenital infection [32]. However, LCMV
has not been linked with diabetes in humans. Indeed, the
types of viruses and their precise role in the pathophysiology
of T1D in humans are still an active area of research [33];
therefore, the mechanisms of disease are likely to be different
to the LCMV-induced rat model.

2.2. Animal Models in T2D. Rodent models of T2D can be
categorised into obese and nonobese and are similarly
flawed by their inability to fully capture the human pheno-
type. Nonobese models, generated by selective inbreeding,
include the Nagoya-Shibata-Yasuda (NSY) mouse and the
Goto-Kakizaki (GK) rat [34, 35]. Similar to the T1D
NOD mouse, the NSY mouse shows gender differences
in the prevalence of diabetes [25], with a cumulative
incidence of diabetes of 98% and 31% at 48 weeks of age
in males and females, respectively [34]. This pronounced
male excess is not observed in humans with T2D [26].
GK rats have had some utility in the study of diabetes
complications and beta cell dysfunction, but limitations
include significant heterogeneity between different rodent
populations leading to variation in the aetiology of
hyperglycaemia, which appears to be mainly due to beta
cell dysfunction and/or reduced mass as opposed to
insulin resistance [18].
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The most widely used models of T2D in animals are the
obese models, comprising the monogenic leptin-deficient
ob/ob mouse and the leptin receptor-deficient db/db mouse
[36, 37]. Both have severe obesity as well as hyperinsulinemic
hyperglycaemia [18]. In humans, it is known that monogenic
leptin deficiency from either a leptin or a leptin receptor gene
mutation is associated with unregulated appetite and very
severe obesity [38, 39], but despite this, T2D has not been
described to date in these patients. The most severe hypergly-
caemia in ob/ob mice occurs at the age of 3-5 months, and
the severity decreases thereafter; islet volume in the pancreas
is increased, and insulin secretion is maintained [40]. This
process does not reflect the 3 cell failure seen in human
T2D. In db/db mice, ketosis occurs at a few months of age,
and they do not live long (only 8-10 months) [41]. Again,
this does not reflect the natural history of T2D in humans.
For full detailed reviews of animal models in diabetes, see
King, British Journal of Pharmacology [18].

2.3. Animal Models in Monogenic Diabetes. Rodent models of
monogenic diabetes have tended to follow on from the dis-
coveries of single gene aetiologies in humans. They have
had some utility in providing support for hypotheses relating
to mechanism and expression patterns for specific genes, par-
ticularly in MODY caused by mutations in the transcription
factors hepatocyte nuclear factor 1 alpha (HNF-1A) [42, 43]
and hepatocyte nuclear factor 1 beta (HNF-1B) [44] and in
neonatal diabetes due to KCNJ11 mutations [45-47]. How-
ever, the phenotype of the monogenic mouse, both in relation
to diabetes and extrapancreatic features, is not always consis-
tent with what is observed in humans [48, 49]. In addition,
the natural history of disease may differ; for example,
humans with glucokinase MODY do not have renal compli-
cations in the long term which contrasts with the proteinuria
and structural kidney changes observed in a liver-specific
hemizygous glucokinase knockout mouse model [50, 51].
These issues limit translatability of such animal models to
monogenic diabetes in humans.

3. Human Research Is Needed to Address the
Questions That Cannot Be Answered
Using Animals

The fundamental differences in the natural history of T1D
and T2D in animal models and humans make it impossi-
ble to interrogate these broad disease categories at an indi-
vidual or indeed subgroup level using rodents. Monogenic
diabetes rodent models bear a slightly closer resemblance
to their human equivalents, but clinical translation
remains limited. As research in animals does not provide
the insights into the heterogeneity of diabetes that are
required for therapeutic advances in the field, new
approaches, focusing on research in humans, are needed
(Table 1).

3.1. Advances in Human Molecular Genetics Have Driven
Treatment Change and Improved Clinical Care in
Monogenic Diabetes. We have outlined the significant limita-
tions of using a monogenic disease in animals to model a

disease that is polygenic in humans. However, one key ques-
tion is whether we can learn lessons from monogenic diabe-
tes in humans that are generalisable to polygenic forms of
diabetes.

Advances in human genetics have revolutionised mono-
genic diabetes research and clinical care for affected families
by accelerating gene discovery and allowing better treatments
to be developed for some subtypes. Historically, single candi-
date genes for a disease in question were screened using
Sanger sequencing. This is an accurate method of sequenc-
ing, but the analysis is relatively slow and expensive as single
genes need to be analysed sequentially in sections (by exon).
Sanger sequencing of specific genes is therefore not ideal for
disorders where there is significant overlap in phenotype
both within and between different genetic aetiologies or
where the genetic cause is not yet known. Next-generation
sequencing is a relatively new technique that allows sequenc-
ing of many genes all at once, at a similar cost to sequencing
just a few genes by the traditional Sanger method [12]. This is
highly advantageous in monogenic diabetes, where an early
and rapid genetic diagnosis is crucial for two reasons. Firstly,
there are treatments that are available for specific types of
diabetes but not for others. For example, maturity-onset
diabetes of the young due to HNF1A/4A mutations can be
treated with low-dose sulphonylureas; neonatal diabetes
due to potassium channel gene mutations can be treated with
high-dose sulphonylureas, whereas mild fasting hyperglycae-
mia due to glucokinase mutations does not require pharma-
cological treatment [13].

Secondly, early identification of diabetes caused by a
single gene allows early prediction of other (extrapancrea-
tic) clinical features associated with that specific gene,
facilitating provision of necessary support and interven-
tions soon after diagnosis; in the case of neonatal diabetes,
this would be in the first six months of life. This contrasts
with previous approaches where clinicians would have to
wait for the patient to develop extrapancreatic features
before determining which genes to sequence [52]. In
neonatal diabetes, a genetic diagnosis can now be made
in 80% of cases [52], because all babies who present with
diabetes in the first 6 months of life can have a panel of
known disease-causing genes sequenced rapidly and accu-
rately using the NGS method.

3.2. Humans with KCNJ11 Mutations Represent the Best
Example of Precision Medicine in Diabetes. A good example
of precision medicine in monogenic diabetes is the treatment
of KCNJII neonatal diabetes with sulphonylureas [53].
KCNJ11 encodes the Kir6.2 subunit of the pancreatic ATP-
dependent potassium (K,.p) channel; it is present in (3 cells
and links blood glucose to insulin secretion. In 2004, the
sequencing of KCNJI11I in human subjects established muta-
tions in this gene as a cause of permanent neonatal diabetes
(PNDM) [54]. PNDM affects ~1/100,000 live births [55]
and is defined as diabetes diagnosed within the first 6 months
of life. To date, there have been 24 genetic causes of neonatal
diabetes identified [52, 56, 57], and KCNJI11 mutations are
the commonest cause accounting for around one-third of
all cases [52].
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Models in diabetes Utility Limitations Facilitators Futur.e
research potential
(i) High throughput
9 Laree-scale bioinf . genomic sequencing
(Lo sl i i o s
(i) GWAS for risk variants in polygenic st (?r I; e required with c (%st (ii) Data sharing via
disease and new gene discovery studies im li%:a tiocrlls human gene/disease/
for monogenic disease (ii)pE thical implications of use and clinical databases,
Populations (ii) Risk and treatment stratification lone-term sto rI; e of senetic data clinical trial data access +++
using biomarkers and clinical features (iii)gFunctional in d c;ginical (iii) Integration of
(iii) Clinical trials of new/repurposed . . . . research into clinical
interpretation of genetic data is .
treatments . . practice, e.g., 100,000
challenging particularly for vast .
Human antities Genomes Project
q (iv) Electronic health
records
(i) High throughput
(i) Mapping pathways and regulatory (i) Difficult to obtain large numbers tg:éfé?li;:q:en%rgs
networks in combination with of specimens from cadaveric donors (ii) Imq ro‘;e d'g"
Beta cells  molecular genetic data (ii) Does not capture multisystem inter r}:e tation of ++
(ii) Determining the role of physiology and so may not be fully GWII\)S findines
immunological/environmental factors translatable to the whole organism ... &
(iii) Advances in
laboratory techniques
(i) Can pI‘OVidE some supporting (i) Differences in aetiology and (i) Advances in
Induced evidence of disease causality or natural history of disease between molecular genetic it
association for genetic/environmental  animals and humans limit clinical techniques including
Animal factor(s) being studied translation/utility genetic manipulation
(1) May he]p generate hypotheses about (ll) Not useful for testing therapeutic
Spontaneous factors involved in disease aetiology/  interventions as differences in animal -+

pathophysiology

and human responses

NGS = next-generation sequencing; GWAS = genome-wide association study; +++ = excellent potential for future advances; ++ = good potential; + = possible

potential; — = limited potential.

KCNJ11 mutations result in diabetes by rendering the
K, rp channel unresponsive to metabolically generated ATP.
Affected babies are clinically very sick and show insulin defi-
ciency, with almost 80% presenting in diabetic ketoacidosis
(DKA) [58]. Until pathogenic variants in the KCNJ11 gene
were discovered, these children were thought to have T1D
and were treated with insulin injections [54]. Physiological
experiments in affected individuals highlighted the possibility
that sulphonylureas, used in T2D to bind and close the K, 1,
channel, could be used as a targeted treatment option in
KCNJ11 PNDM. This was confirmed in 2006 when the first
large cohort study showed that 90% of patients were able to
switch from insulin injections onto oral sulphonylureas with
improvements in glycaemic control and less glycaemic vari-
ability [53, 59]. Inability to switch, although uncommon, is
associated with specific genotypes and long duration of diabe-
tes before attempting to change treatment [60, 61]. In those
who switch successfully, the excellent initial glycaemic
response is maintained over at least 5 years and is not associ-
ated with any increase in hypoglycaemia rates [62-64].

The repurposing of an existing oral diabetes therapy that
resulted in near normalisation of blood glucose for the great
majority of affected individuals with KCNj11 PNDM was
life-changing for patients and their families, and human
research was crucial for this discovery. Indeed, without the

gene discovery and the clinical trial of targeted therapy in
humans, people with KCNJ11 PNDM would have remained
on a treatment that was not very efficient and that allowed
only suboptimal glycaemic control, leading to increased risk
of long-term diabetes complications.

3.3. Neurological Features in KCNJ11 PNDM Reflect
Expression of the KCNJ11 Gene in the Brain and Vary
according to Genotype. Initial reports of KCNJI1 PNDM
showed that =20% of affected individuals exhibited overt
and severe neurological features in addition to their diabetes;
this was named DEND syndrome (developmental delay,
?epilepsy, and neonatal diabetes) or intermediate DEND
(iDEND) if epilepsy was not evident in the first 12 months
of life. The clinical phenotype was found to be related to
the genotype, with more severe clinical features generally
being associated with the more functionally severe mutations
[49, 65]. For example, early studies reported developmental
delay/intellectual disability (often severe), motor problems,
and/or epilepsy in >80% of patients with the V59M muta-
tion, in contrast to the R201H mutation where diabetes with-
out neurological features was reported in >95% cases [54, 59,
65-76].

The presence of neurological features in this type of
diabetes is due to expression of KCNJII in K, channels
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in several brain regions as well as the pancreas [77]. Recent
research has shown that in addition to the classical DEND
syndrome, patients can have a range of other specific
features. Neurodevelopmental disorders such as autism and
ADHD are more commonly associated with specific muta-
tions like V59M [78, 79]. Furthermore, neuropsychological
impairments affecting executive function, attention, praxis,
working memory, vocabulary, and visuomotor performance
have been identified [78, 80-82]. Interestingly, subtle abnor-
malities are also observed in patients with mutations previ-
ously thought to cause only diabetes without neurological
features. One large cohort study of patients without overt
neurological features reported attention deficits in all patients
and dyspraxia (developmental coordination disorder) in
80% [80].

Performing this detailed phenotyping in humans has
provided clinical insights that would not have been possible
using nonhuman research methods. For example, selective
expression of the V59M mutation in the rodent brain gives
rise to a model of DEND syndrome which shares character-
istics with the human neurological phenotype [46]. However,
there are also notable differences, e.g., the mice show reduced
anxiety behaviour whereas humans show more anxiety [47,
78]. In addition, the milder neurological phenotypes associ-
ated with other mutations in the same gene have not been
explored in rodent models, and subtle cognitive deficits
would be very difficult to assess in animals in the same way
as they can be assessed in humans.

3.4. Impact of Sulphonylureas on the Neurological Phenotype
in KCNJ11 PNDM and Generating Mechanistic Hypotheses
from the Rodent Model. In addition to achieving excellent
metabolic control, an exciting aspect of switching patients
with KCNJ11 mutations from insulin to sulphonylureas,
which was initially described in clinical case reports and neu-
roimaging studies, is an improvement in the neurological fea-
tures [75, 83-86]. This was recently confirmed by a
prospective study which showed partial improvement in
some of the neurological features in the first year after
switching to sulphonylureas [87]. It has been suggested
that the neurological response may be better the earlier
in life the sulphonylureas are started [82], due to increased
neuroplasticity in younger children, but further studies are
needed to address this issue.

Another possible reason for the incomplete CNS
response to sulphonylurea treatment in people with KCNJ11
PNDM is that therapeutic concentrations of sulphonylurea
are not achieved in the human CSF. In rats, active transport
of glibenclamide out of the brain across the blood-brain bar-
rier (BBB) has been demonstrated [88]. Therefore, high con-
centrations of glibenclamide, as seen in the blood, are not
achieved in the brain. This concept has led to the use of
higher doses of sulphonylureas in individuals with neurolog-
ical features, with improvements reported by patients at
doses of around 1mg/kg/day glibenclamide. These higher
doses appear to be safe with no increase in rates of hypogly-
caemia [89]. However, given the issues around translation of
animal models outlined above and the structural differences
between the rodent and human brain [90], it will be

important to confirm in future human studies if and how
glibenclamide and other sulphonylureas act in the human
CNS. This might include direct in vivo measurement of
sulphonylurea concentrations in human cerebrospinal
fluid (CSF) or the use of in vitro experiments with BBB
models [91] which may provide a potential way of inves-
tigating this question without the risks of invasive proce-
dures in patients.

3.5. Lessons Learned from KCNJ11 PNDM Are Not Directly
Applicable to All Neonatal Diabetes or to Polygenic Forms of
Diabetes. KCNJ11 PNDM is a good example of how human
molecular genetics has driven the application of precision
medicine in diabetes. However, KCNJI11 mutations are only
one of the causes of neonatal diabetes, and findings in one
subtype are not generalisable to all, although the general
concept of using molecular genetics to determine aetiology
and treatment can be applied more widely (Figure 1). Other
subtypes of neonatal diabetes are caused by mutations in a
variety of genes; all share the clinical characteristic of diabe-
tes in the first 6 months of life, but there are significant phe-
notypic differences between them. For example, people with
neonatal diabetes due to insulin (INS) gene mutations
(which account for around 10% of cases of neonatal diabe-
tes) do not have any specific neurological phenotype [92],
whereas CNS features comprise a large part of the phenotype
in KCNJ11 PNDM. Individuals with other syndromic forms
of neonatal diabetes have neurocognitive impairments in
addition to other multisystem features, e.g., GATA6 muta-
tions cause cardiac defects, pancreatic exocrine insufficiency,
gut abnormalities, and hypothyroidism/hypopituitarism
[93].

In addition to phenotypic differences, differing genetic
aetiologies also mean that different treatment approaches
are needed. Heterozygous dominant negative INS mutations
cause abnormal preproinsulin and proinsulin structures to be
produced. This causes ER stress in the beta cell resulting in
cell death and absolute insulin deficiency [52] which requires
permanent insulin treatment [94], in stark contrast to the
sulphonylurea sensitivity of patients with KCNJI11 mutations
[53]. Even within KCNJ11 neonatal diabetes, there is hetero-
geneity amongst patients with the same mutation in terms of
phenotype and treatment responses, as described above. This
heterogeneity is true for all subtypes of diabetes, including
the common polygenic forms (T1D and T2D); however, it
provides an opportunity to define discrete subgroups in a
precise manner, with significant implications for new drug
discovery and repurposing of existing treatments.

4. A Human-Specific Roadmap for Future
Diabetes Research

We have established that findings obtained with animal
models are not efficiently translated into humans, and it is
impossible to generalise research findings from one subtype
of human diabetes to another. Therefore, alternative
approaches are needed to drive advances in diabetes research
that are clinically translatable. A range of rapidly evolving
methods can be applied to human cells and human
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leading to development of new targeted treatments.

populations to enhance understanding in key areas, facilitat-
ing development of new targeted treatments between and
within all subtypes of diabetes and allowing application of
precision medicine (Figure 1).

4.1. The Impact of Molecular Genetics in TID and T2D:
Aetiology and Correct Diagnosis. Before we can develop
effective new therapies in diabetes, we must identify and
understand aetiological pathways that can provide targets
for treatment. One of the ways in which human molecular
genetics has enhanced our understanding of the patho-
physiology of polygenic diabetes is through genome-wide
association (GWA) studies [95, 96]. These have been made
possible by development of high throughput genotyping
technologies such as NGS, increased availability of large
cohorts of individuals with the disease in question and
control population data with which to compare them
(see below), and better understanding of sequence pattern
variation [96]. Over 100 T2D susceptibility loci have been
identified to date, and there is now much focus on deter-
mining the function of associated genes and the pathways
in which they play a role [97]. However, interpretation of
the function of associated genetic variants is challenging as
it is frequently difficult to prove a causal link between the
variant and the disease [97]. In addition, effect sizes of
causal variants in T2D are small [96], making it extremely
difficult to develop specific therapies targeted at a single
gene or pathway, as has been described above for monogenic

diabetes. For these reasons, clinical translation of GWAS
findings has been limited to date. In the future, as whole
genome sequencing becomes less costly, it is likely that
larger populations will be screened which may assist the
discovery of new variants or help explain existing associ-
ations and how they relate to T2D risk. Further advances
in functional experimental techniques may enhance our
ability to move from associations to causal relationships.
T2D GWAS will therefore be an important tool in terms
of biological insights, drug targets, and disease prediction
(Figure 1).

Despite the complexities of functional interpretation of
genetic risk variants in polygenic diabetes, they can be useful
in assisting diagnosis, which is fundamental for selecting the
correct treatment. In T1D, a genetic risk score (T1D GRS)
based on 30 T1D-associated risk variants each weighted
according to individual risk contribution has been developed;
this score or derivatives comprising even fewer SNPs can
reliably differentiate T1D from T2D and T1D from mono-
genic diabetes [98, 99]. The T1D GRS is now being used
in both research and clinical contexts. This has significant
implications in terms of making the correct clinical diag-
nosis early and starting the correct treatment, as well as
ensuring phenotypic purity in research cohorts in TID.
As it is a relatively low-cost investigation, its use is likely
to become more widespread in the future, and there is
potential for similar methodology to be applied to other
polygenic diseases.
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Finally, genes involved in monogenic diabetes may also
be implicated in polygenic disease, for example, activating
mutations in KCNJ11 causes neonatal diabetes whilst the
common E23K variant in KCNJI1 has been associated with
T2D susceptibility [54, 100]. Therefore, monogenic diabetes
has utility in identifying potential mechanisms that contrib-
ute to polygenic diabetes risk [101]. However, the complex
inheritance patterns, multifactorial aetiologies, and small
effect sizes of genetic risk variants in polygenic diabetes give
rise to very heterogeneous populations of patients, and mul-
tiple complementary approaches are required to unpick this.

4.2. Availability of Large-Population-Based Data Sets and
Sharing of Data Can Provide New Insights into Polygenic
Diabetes. Historically, one of the drawbacks of research in
humans has been the inability to power studies adequately
due to lack of availability of cohorts of patients with a specific
disease or aspects of a disease of interest. This is particularly
problematic in genetics studies, where large populations are
required to identify risk variants with relatively small effect
sizes in polygenic diseases like T1D and T2D. In recent years,
the problem has been mitigated by the availability of increas-
ing numbers of large-population research cohorts, such as
UK Biobank [102]. UK Biobank contains anonymized health
data, including genetic and clinical information, on over
500,000 volunteers which are available for approved
researchers to use. Application of rapidly advancing bioinfor-
matics techniques to these population-based data sets repre-
sents an exciting opportunity to gain novel insights. Indeed,
one recent publication using UK Biobank and applying the
TID GRS outlined above [99] provided new insights into
T1D, by demonstrating persistence of T1D risk beyond the
age of 30 thereby highlighting the need for clinicians to con-
tinue to consider this diagnosis in adults [103].

Another means of acquiring data from large populations
is data sharing from large-scale clinical trials, which is now
actively encouraged and endorsed by many trial sponsors
and influential bodies [104]. Full individual participant data
for many trials can be requested and accessed by researchers
via websites such as Clinical Study Data Request [105]. Sec-
ondary analysis and statistical modelling of trial data allow
evaluation of outcomes in subgroups of patients based on
clinical characteristics, the presence of specific biomarkers,
or genotype. These population-based methods can facilitate
an alternative approach to precision medicine in polygenic
forms of diabetes, such as T2D, whereby clinical features
and biomarkers are used to stratify patients into specific
treatment groups [13]. An excellent example of this is using
clinical features to stratify patients with type 2 diabetes when
deciding which second-line glucose-lowering therapy to use
[106]. Therefore, future clinical research on diabetes will rely
heavily on shared human population data.

The concept of large-scale data sharing is also applicable
to genetic data. NGS technologies have reduced the cost of
genetic testing by a factor of between 100 and 200 in the last
5 years. As genetic testing continues to decrease in price and
analysis methods improve, sequencing particularly at the
level of exome or whole genome will become more accessible
to larger numbers of individuals. This will generate vast

quantities of genetic data requiring accurate interpretation,
which can be a major challenge. However, in recent years,
databases generated from data sharing containing genetic
variants from human populations (e.g., the Genome Aggre-
gation Database (gnomAD), Exome Aggregation Consor-
tium (ExAC), and dbSNP) and human disease (e.g., the
Human Gene Mutation Database (HGMD) and ClinVar)
have revolutionised the ability of clinical scientists to inter-
pret variants and their likely pathogenicity. Further initia-
tives such as the 100,000 Genomes Project seek to not only
provide clinical diagnoses for people with rare genetic condi-
tions but also generate a large population sample of genomic
data that will be invaluable for researchers in the future as the
patients’ health records and outcome data can be linked to
their genetic data [107].

Indeed, the concept of integrating research with clinical
practice has evolved substantially in recent years, particularly
where there is availability of electronic health records (EHR).
Primary care is particularly well placed to apply this because
many practices have moved to an EHR approach. In the UK,
Clinical Practice Research Datalink (CPRD) is a well-
established source of anonymized clinical information from
general practice (GP) records that can be utilised for
research; it has resulted in over 1800 publications to date
[108]. Most patients with diabetes are followed up clinically
by their GP; therefore, this is a key opportunity for research
in the field. Indeed, it has been shown that diabetes and its
treatment are two of the main topics of research being gener-
ated from primary care databases in the UK [109]. However,
there are several legal and ethical issues relating to data shar-
ing and storage that have hindered the use of EHR in many
healthcare settings; this is particularly pertinent when it
comes to linking genomic data with personally identifiable
data [110, 111]. To make the most of the opportunities
afforded by EHR in the future, robust policies addressing
confidentiality and security of information should be devel-
oped by key regulatory authorities [112].

A caveat of the clinical and genomic data repositories that
are currently available is the paucity of ethnic diversity in the
populations studied leading to underrepresentation of non-
European groups [113]. The ever-increasing number of indi-
viduals contributing data to such repositories bodes well for
improved stratification by ethnicity in the future, but in the
meantime, caution should be used when attempting to gener-
alise findings to minority populations.

4.3. Availability of Human Islets for Research and New
Experimental Techniques Provide Insights into Pathways
Involved in Diabetes Pathophysiology. Modern immunobhisto-
chemical and imaging techniques and availability of collec-
tions of specific human tissues for research can greatly
enhance our understanding of the pathophysiology of
diabetes. A recent study of pancreas sections obtained at
postmortem from a UK cohort of patients with T1D
provided exciting mechanistic insights, demonstrating a dif-
ferent insulitic profile in patients diagnosed under 7 years
versus those diagnosed over 13 years [114]. In addition, the
latter group retained ~40% of insulin containing islets at
diagnosis, which implies 8 cell dysfunction as opposed to



loss may be important. This work and ongoing research in
the field will have important implications for patient stratifi-
cation in T1D immunotherapy trials and in the development
of targeted treatments for specific patient groups.

Research in human islets harvested from cadaveric
donors has also advanced knowledge relating to cellular
and molecular pathways relevant to T2D. Recent advances
in genetic techniques have facilitated identification of many
T2D susceptibility genes and allowed genetic data to be
combined with functional data to map pathways and define
mechanisms associated with human islet dysfunction,
including key regulatory networks [115, 116]. These
approaches have great potential to further enhance our
understanding of polygenic forms of diabetes and gene-
environment interactions and in combination with findings
from large population studies, to guide development of new
therapeutic interventions.

4.4. Precision Medicine Must Also Encompass Patient
Preference and Impact on Quality of Life. Another area of
precision medicine where human studies are essential is
exploring the influence of psychosocial factors on patient
outcomes. Quality of life measures are frequently used in
evaluating cost-effectiveness of medical interventions [117].
Development of targeted treatments for specific subtypes of
diabetes should therefore include research that evaluates
patients’ perceptions of these treatments and impact on qual-
ity of life. Even when the biological efficacy of new treatments
has been proven, the willingness of patients to accept them
will be variable and influenced by psychological factors. For
example, treatment change from insulin injections to oral
sulphonylureas had a hugely positive impact on many fami-
lies affected by KCNJ11 neonatal diabetes. They experienced
improved quality of life, more freedom, and reduced levels
of psychological distress as a result of better glycaemic ?con-
trol, less glycaemic variability, and reduced need for hyper-
vigilance of parents towards their affected children [118-
120]. However, for a few adults with KCNJ11 mutations
who had been assumed to have T1D all of their lives, there
was initial uncertainty about the implications of a genetic
diagnosis as it could result in a loss of the insulin injections
on which they had always been dependent [118, 119]. These
individuals viewed insulin very much as part of their iden-
tity, and loss of this identity required ?significant adjustment
[121].

In addition, mental illness is a significant problem in
individuals with chronic physical health conditions. The inci-
dence and prevalence of depression are increased in people
with diabetes [122], which will have implications for adher-
ence, response, and attitudes to new treatments. Severe men-
tal illnesses such as schizophrenia and bipolar disorder are
associated with a 2-3 fold increase in diabetes prevalence,
and this is only partly explained by the adverse metabolic
effects of antipsychotic treatment [123]. Patient stratification
using only biomarkers or genetic risk variants for diabetes
does not take account of psychological influences and
psychiatric comorbidity. Future models for precision
approaches in diabetes should incorporate these ideas; this
will be challenging but could be facilitated by integration
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of qualitative methods into biological studies and interdis-
ciplinary collaboration.

5. Human-Specific Research Can Enhance
Understanding of Heterogeneity and Is the
First Step towards Precision Medicine across
All Subtypes of Diabetes

In diabetes, the correct diagnosis is essential to ensure the
correct treatment is given. However, both diagnostics and
therapeutics continue to represent significant challenges to
diabetologists. Heterogeneity between and within subtypes
of diabetes is becoming increasingly recognised and only
serves to make the task more difficult. To enable a precision
medicine approach in diabetes, we need to significantly
enhance our understanding of this heterogeneity.

Animals have been used historically to model diabetes in
humans, but their utility is limited largely because the empha-
sis in humans is on specific treatments for specific diabetes
subtypes. The animal models used have fundamental genetic
and phenotypic differences to diabetes in humans and cannot
reflect the diversity of subtypes. This is exemplified by the lack
of effective translation of treatments developed in animal
models into humans. Therapeutic advances in diabetes there-
fore require alternative human-specific research methods.

Monogenic diabetes is an excellent example of the appli-
cation of precision medicine. In particular, the treatment of
KCNJ11 neonatal diabetes with sulphonylureas represents
the best precision approach in diabetes and illustrates how
advances in human molecular genetic techniques have facil-
itated major discoveries, with huge implications for patient
care. However, it also illustrates how specific targeted treat-
ment for one subtype within a broader category (in this case,
neonatal diabetes) cannot be generalised to all subtypes. In
polygenic diabetes such as T1D and T2D, genetics can help
by providing information about risk variants, but effect sizes
are small. The situation is particularly complex given that
within T1D and T2D there is significant heterogeneity
between groups of individuals, whether they are defined by
clinical characteristics or response to treatment.

In summary, the road ahead in diabetes research is exciting
but complex. A combined approach that uses advanced molec-
ular genetic techniques, pathway-focused research in human
islets, computational methods in large population cohorts
and trial data, qualitative research, and other techniques yet
to be developed may help to unpick the differences between
diabetes subtypes. This will be the first step towards under-
standing and rising to the challenge of heterogeneity in diabe-
tes, to facilitate precision medicine and improved clinical care.
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